Curvelet Transform Domain-Based Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Matrix Factorization With Data-Guided Constraints For Hyperspectral Unmixing

Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in a hyperspectral image may posses...

متن کامل

Area-Correlated Spectral Unmixing Based on Bayesian Nonnegative Matrix Factorization

To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed method, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of t...

متن کامل

Sparse Deep Nonnegative Matrix Factorization

Nonnegative matrix factorization is a powerful technique to realize dimension reduction and pattern recognition through single-layer data representation learning. Deep learning, however, with its carefully designed hierarchical structure, is able to combine hidden features to form more representative features for pattern recognition. In this paper, we proposed sparse deep nonnegative matrix fac...

متن کامل

Extended Sparse Nonnegative Matrix Factorization

In sparse nonnegative component analysis (sparse NMF) a given dataset is decomposed into a mixing matrix and a feature data set, which are both nonnegative and fulfill certain sparsity constraints. In this paper, we extend the sparse NMF algorithm to allow for varying sparsity in each feature and discuss the uniqueness of an involved projection step. Furthermore, the eligibility of the extended...

متن کامل

Sparse Nonnegative Matrix Factorization for Clustering

Properties of Nonnegative Matrix Factorization (NMF) as a clustering method are studied by relating its formulation to other methods such as K-means clustering. We show how interpreting the objective function of K-means as that of a lower rank approximation with special constraints allows comparisons between the constraints of NMF and K-means and provides the insight that some constraints can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2020

ISSN: 1939-1404,2151-1535

DOI: 10.1109/jstars.2020.3017023